Звезды-гиганты и звезды-карлики. Звезды-гиганты

> Звезды

Звезды – массивные газовые шары: история наблюдений, названия во Вселенной, классификация с фото, рождение звезды, развитие, двойные звезды, список самых ярких.

Звезды - небесные тела и гигантские светящиеся сферы плазмы. Только в нашей галактике Млечный Путь их насчитывают миллиарды, включая Солнце. Не так давно мы узнали, что некоторые из них еще и располагают планетами.

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше , а значит подчиняются тем же физическим законам.

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

Наименование звезд Вселенной

Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.

В современном мире насчитывается (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона (Альфа Ориона) – «рука (подмышка) великана».

Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.

Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.

Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.

Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.



Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.

Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных.


Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя.

Планетные системы белых карликов

Астрофизик Роман Рафиков о дисках вокруг белых карликов, кольцах Сатурна и будущем Солнечной системы

Компактные звезды

Астрофизик Александр Потехин о белых карликах, парадоксе плотности и нейтронных звездах:


Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.

Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.

Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.


Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.

Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.

Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.

Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).

Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.

Формирование звезды

Давайте внимательнее изучим процесс рождения звезды. Сначала мы видим гигантское медленно вращающееся облако, наполненное водородом и гелием. Внутренняя гравитация заставляет его сворачиваться внутрь, из-за чего вращение ускоряется. Внешние части трансформируются в диск, а внутренние в сферическое скопление. Материал разрушается, становясь горячее и плотнее. Вскоре появляется шарообразная протозведа. Когда тепло и давление вырастают до 1 миллиона °C, атомные ядра сливаются и зажигается новая звезда. Ядерный синтез превращает небольшое количество атомной массы в энергию (1 грамм массы, перешедший в энергию, приравнивается к взрыву 22000 тонн тротила). Посмотрите также объяснение на видео, чтобы лучше разобраться в вопросе звездного зарождения и развития.

Эволюция протозвездных облаков

Астроном Дмитрий Вибе об актуализме, молекулярных облаках и рождении звезды:

Рождение звезд

Астроном Дмитрий Вибе о протозвездах, открытии спектроскопии и гравотурбулентной модели звездообразования:

Вспышки на молодых звездах

Астроном Дмитрий Вибе о сверхновых, типах молодых звезд и вспышке в созвездии Ориона:

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино. Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это . Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в .

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

Термоядерные реакции и компактные объекты

Астрофизик Валерий Сулейманов о моделировании атмосфер, «большом споре» в астрономии и слиянии нейтронных звезд:

Астрофизик Сергей Попов о расстоянии до звезд, образовании черных дыр и парадоксе Ольберса:

Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в многократные.

Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.

Релятивистские двойные звезды

Астрофизик Сергей Попов об измерении массы звезды, черных дырах и ультрамощных источниках:

Свойства двойных звезд

Астрофизик Сергей Попов о планетарных туманностях, белых гелиевых карликах и гравитационных волнах:

Характеристика звезд

Яркость

Для описания яркости звездных небесных тел используют величину и светимость. Понятие величины основывается еще на работах Гиппарха в 125 году до н.э. Он пронумеровал звездные группы, полагаясь на видимую яркость. Самые яркие – первая величина, и так до шестой. Однако расстояние между и звездой способно влиять на видимый свет, поэтому сейчас добавляют описание фактической яркости – абсолютная величина. Ее вычисляют при помощи видимой величины, как если бы она составляла 32.6 световых лет от Земли. Современная шкала величин поднимается выше шести и опускается ниже единицы (видимая величина достигает -1.46). Ниже можете изучить список самых ярких звезд на небе с позиции наблюдателя Земли.

Список самых ярких звезд видимых с Земли

Название Расстояние, св. лет Видимая величина Абсолютная величина Спектральный класс Небесное полушарие
0 0,0000158 −26,72 4,8 G2V
1 8,6 −1,46 1,4 A1Vm Южное
2 310 −0,72 −5,53 A9II Южное
3 4,3 −0,27 4,06 G2V+K1V Южное
4 34 −0,04 −0,3 K1.5IIIp Северное
5 25 0,03 (перем) 0,6 A0Va Северное
6 41 0,08 −0,5 G6III + G2III Северное
7 ~870 0,12 (перем) −7 B8Iae Южное
8 11,4 0,38 2,6 F5IV-V Северное
9 69 0,46 −1,3 B3Vnp Южное
10 ~530 0,50 (перем) −5,14 M2Iab Северное
11 ~400 0,61 (перем) −4,4 B1III Южное
12 16 0,77 2,3 A7Vn Северное
13 ~330 0,79 −4,6 B0.5Iv + B1Vn Южное
14 60 0,85 (перем) −0,3 K5III Северное
15 ~610 0,96 (перем) −5,2 M1.5Iab Южное
16 250 0,98 (перем) −3,2 B1V Южное
17 40 1,14 0,7 K0IIIb Северное
18 22 1,16 2,0 A3Va Южное
19 ~290 1,25 (перем) −4,7 B0.5III Южное
20 ~1550 1,25 −7,2 A2Ia Северное
21 69 1,35 −0,3 B7Vn Северное
22 ~400 1,50 −4,8 B2II Южное
23 49 1,57 0,5 A1V + A2V Северное
24 120 1,63 (перем) −1,2 M3.5III Южное
25 330 1,63 (перем) −3,5 B1.5IV Южное

Другие известные звезды:

Светимость звезды – скорость излучения энергии. Ее измеряют при помощи сравнения с солнечной яркостью. Например, Альфа Центавра А в 1.3 ярче Солнца. Чтобы произвести те же вычисления по абсолютной величине, придется учитывать, что 5 по шкале абсолютной приравнивается к 100 на отметке светимости. Яркость зависит от температуры и размера.

Цвет

Вы могли заметить, что звезды отличаются по цвету, который, на самом деле, зависит от поверхностной температуры.

Класс Температура,K Истинный цвет Видимый цвет Основные признаки
O 30 000-60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000-30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500-10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000-7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000-6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500-5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000-3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Каждая звезда обладает одним цветом, но производит широкий спектр, включая все виды излучения. Разнообразные элементы и соединения поглощают и выбрасывают цвета или длины волн цвета. Изучая звездный спектр, можно разобраться в составе.

Поверхностная температура

Температура звездных небесных тел измеряется в кельвинах с температурой нуля, равной -273.15 °C. Температура темно-красной звезды – 2500К, ярко-красной – 3500К, желтой – 5500К, голубой – от 10000К до 50000К. На температуру частично влияет масса, яркость и цвет.

Размер

Размер звездных космических объектов определяется в сравнении с солнечным радиусом. У Альфа Центавра А – 1.05 солнечных радиусов. Размеры могут быть разными. Например, нейтронные звезды в ширину простираются на 20 км, а вот сверхгиганты – в 1000 раз больше солнечного диаметра. Размер влияет на звездную яркость (светимость пропорциональна квадрату радиуса). На нижних рисунках можно рассмотреть сравнение размеров звезд Вселенной, включая сопоставление с параметрами планет Солнечной системы.

Сравнительные размеры звезд

Масса

Здесь также все вычисляется в сравнении с солнечными параметрами. Масса Альфа Центавра А – 1.08 солнечных. Звезды с одинаковыми массами могут не сходиться по размерам. Масса звезды влияет на температуру.

Карлики, гиганты и главная последовательность

Когда люди научились измерять размеры звезд, оказалось, что эти самые размеры очень разнообразны. В связи с этим появилась потребность как-то классифицировать звезды по размерам. Было это задолго до появления теории эволюции звезд и даже еще до теоремы Герцшпрунга-Рассела, т.е. примерно вторая половина девятнадцатого века.

Так вот, еще в этой седой астрономической древности выяснилось, что для ряда спектральных классов существуют две больших группы звезд этого класса, и в одной группе звезды заметно больше чем в другой. Ничтоже сумняшеся, маленькие звезды назвали "карликами", а большие "гигантами". Так возникла дожившая до наших дней терминология: красные карлики и красные гиганты, оранжевые карлики и оранжевые гиганты, желтые карлики и желтые гиганты... Стоп. Потому что с белыми звездами все оказалось гораздо сложнее: резкой разницы в размерах среди белых звезд не наблюдалось.

Потом Герцшпрунг и Рассел нарисовали свою диаграмму, и оказалось, что красные, оранжевые и желтые карлики находятся на главной последовательности, а именно в правой нижней ее части. Гиганты и сверхгиганты уютно устроились на нескольких горизонтальных последовательностях в правом верхнем углу диаграммы. Конечно, на диаграмме Герцшпрунга-Рассела откладывается светимость, а не размер, но, как мы помним, для звезд одной и той же температуры (цвета) светимость растет с площадью поверхности звезды. На диаграмме легко заметна разница в светимостях (а значит, и в размерах) между карликами и гигантами спектральных классов G, K, M.

А вот с белыми звездами так не получилось. Если вы посмотрите на диаграмму, то увидите, что в области белых и голубых звезд главная последовательность поднимается на один уровень светимостей с последовательностями гигантов и почти достигает уровня светимостей сверхгигантов. Белые и голубые звезды главной последовательности настолько велики и мощны, что назвать их карликами ну никак не получается!

Поэтому белые и голубые звезды главной последовательности так и называются - звезды главной последовательности. Длинный термин, но ничего лучшего не придумали.

Хотя о звездах главной последовательности в совокупности иногда говорят "карлики". Но такое использование термина все-таки неуклюже и некорректно, во-первых из-за больших белых и голубых звезд, а во-вторых потому, что имеются звезды-карлики, которые не находятся на главной последовательности.

С гигантами тоже оказалось не все гладко. В отличие от звезд главной последовательности, они наотрез отказались устраиваться на одной ровной и гладкой линии. Сначала для них пришлось нарисовать две последовательности - гиганты и сверхгиганты; но и этого оказалось мало. Сверхгиганты тоже разделились на две группы, так что пришлось вводить для них две подпоследовательности (Ia и Ib), а между сверхгигантами и обыкновенными гигантами втиснулась ветвь "ярких гигантов" (II). А совсем недавно открыли новый класс звезд, которые превышают по размерам и светимостям сверхгиганты. Для того, чтобы врисовать их последовательность (0) в диаграмму Герцшпрунга-Рассела, пришлось "увеличивать" ее сверху - расширять диапазон светимостей.

Кроме того, при подробном изучении космоса выяснилось, что существуют-таки звезды с промежуточными размерами между карликами и гигантами, хотя и сравнительно немного. Их назвали субгигантами.

Белые звезды главной последовательности не называют карликами - они для этого слишком велики. Но тем не менее, как мы знаем, белые карлики существуют. У них есть своя последовательность на диаграмме Герцшпрунга-Рассела (VII) и совершенно свои, не укладывающиеся в общую классификацию, спектральные классы.

Последовательность белых карликов находится левее и ниже главной последовательности. И протягивается она через диапазон температур, соответствующий нескольким классическим спектральным классам. Т.е. получается, что белые карлики могут быть и желтыми, и оранжевыми, и даже голубоватыми. И все равно они будут белыми карликами, потому что этот термин применяется к классу звезд, который определяется не температурой (она может быть почти любой), а специальным внутренним строением, и прежде всего огромной плотностью (наш знакомый Сириус B имеет диаметр Земли и массу Солнца).

Что до голубых карликов, то это понятие пока гипотетическое, относится к теоретически возможному, но неоткрытому пока типу звезд.

Таблица, которая представляет разновидности звезд с точки зрения размера.
Для простоты в сверхгиганты включены и гипергиганты.


Карлики Звезды главной последовательности Гиганты Сверхгиганты
Голубые гипотетические Регул, Спика Беллатрикс, Альциона А Ригель
Белые Сириус B, Процион B, Звезда Ван Маанена Сириус, Вега, Альтаир Тубан, Сигма Октанта Денеб, Полярная звезда, Канопус
Желтые Солнце, Альфа Центавра А Капелла Aa, Капелла Ab Ро Кассиопеи
Оранжевые Альфа Центавра B, Эпсилон Эридана, 61 Лебедя Арктур, Поллукс, Альдебаран Омикрон 1 Большого Пса, Сигма Большого Пса, Пси 1 Возничего
Красные Проксима Центавра, Звезда Барнарда и много-много других Гамма Южного Креста Бетельгейзе, Антарес, VY Большого Пса

Итак, подведем итоги: для желтых, оранжевых и красных звезд понятия "карлик" и "звезда главной последовательности" совпадают; для белых и голубых звезд они очень и очень различаются.

Я с удовольствием добавлю в эту таблицу ваши любимые звезды. :-)

Чемпионы Вселенной

Конечно, вы хотите узнать, каких размеров бывают звезды и какие звезды во Вселенной самые большие и самые маленькие.

Понятно, что самую большую звезду надо искать среди гипергигантов, но каких? Однозначных зависимостей, связывающих температуру и размер, для гигантов нет, но в общем и целом известно, что звезды разогреваются при сжатии и остывают при расширении. Поэтому, скорее всего, самая большая звезда будет и одной из самых холодных - красным гипергигантом.

Это действительно так. Самая большая известная на сегодня звезда - VY Большого Пса. Этот монстр Вселенной в 2000 раз больше Солнца по диаметру, и посчитайте сами, во сколько раз по объему. По массе она больше Солнца только приблизительно в 20 раз, так что можете себе представить, какая у нее низкая плотность. Светимость у нее благодаря гигантским размерам примерно 300000 солнечных, несмотря на то, что температура поверхности всего 3000 К. Находится она от нас в 5 тысячах световых лет, так что, понятное дело, видна только в телескоп.

Рисунок иллюстрирует, на сколько раз VY Большого Пса больше Солнца.

С обратной стороны... отличников прошу опустить руки, сегодня мы не выходим за пределы главной последовательности, а то потом будет неинтересно. С обратной стороны чемпионку надо искать среди красных карликов, но тут возникают две проблемы. Во-первых, эти красные карлики в большинстве своем похожи друг на друга больше, чем две репродукции одной картины, а во-вторых, эти крохотные тусклые сущности пойди замерь с достаточной точностью! Для примера можно привести один из самых крохотных известных на сегодня красный карликов - Wolf424B (второй компонент системы, обозначенной в каталоге Вольфа как 424, и другого названия у нее нет). Радиус у него 0,14 солнечных, масса - 0.13 солнечных (нижний возможный предел массы для нормальной звезды). Впрочем, первый компонент этой системы, Wolf424A, только чуть-чуть покрупнее своего собрата и тоже входит в число самых маленьких известных звезд.

Тяжелые и легкие

А каково разнообразие звезд по массам?

Существенно меньшее, чем по размерам. Существует верхний предел возможной массы для звезды, связанный с предельно возможной светимостью, которую называют пределом Эддингтона. Сэр Артур Эддингтон доказал, что более тяжелая и яркая звезда не может существовать, потому что не возникнет равновесия гравитации и внутреннего давления, и звезда просто будет очень неустойчивой. Предельная масса звезд получается примерно 150 солнечных масс.

Вселенная неплохо демонстрирует правильность этого заключения: звезд с массой больше 150 не найдено (имеются оценки в районе 175 солнечных масс, но они крайне неточны). Довольно уверенно в числе чемпионок Вселенной по массе называют уже упоминавшуюся чемпионку по светимости Эту Киля.

А нижний предел массы звезды, как уже упоминалось выше - 0.13 солнечных масс. Все, что немного тяжелее этого предела - наши знакомые красные карлики. Если масса звезды меньше 0.13 солнечных масс, гравитация не сможет сжать ее достаточно сильно для того, чтобы ядро разогрелось достаточно для начала термоядерной реакции превращения водорода в гелий. То есть такой объект никогда не сможет выйти на главную последовательность.

О том, что за объекты эти нечты с массой меньше 0.13 солнечных, поговорим в следующий раз.

Звезды сверхгиганты – космическая судьба этих колоссальных светил предназначила им в определенное время вспыхнуть сверхновой.

Рождение всех звезд происходит одинаково. Гигантское облако молекулярного водорода начинает сжиматься в шар под влиянием гравитации, пока внутренняя температура не спровоцирует ядерный синтез. На протяжении всего существования светила пребывают в состоянии борьбы с собой, внешний слой давит силой тяжести, а ядро – силой разогретого вещества, стремящегося расширится. В процессе существования водород и гелий постепенно выгорают в центре и обычные светила, имеющие значительную массу, становятся сверхгигантами. Встречаются такие объекты в молодых образованиях, таких как неправильные галактики или рассеянные скопления.

Свойства и параметры

Масса играет решающую роль в формировании звезд – в крупном ядре синтезируется больше количество энергии, которая повышает температуру светила и его активность. Приближаясь к финальному отрезку существования объекты с весом, превышающим солнечный в 10-70 раз, переходят в разряд сверхгигантов. В диаграмме Герцшпрунга-Рассела, характеризующей отношения звездной величины, светимости, температуры и спектрального класса, такие светила расположены сверху, указывая на высокую (от +5 до +12) видимую величину объектов. Их короче, чем у других звезд, потому что своего состояния они достигают в финале эволюционного процесса, когда запасы ядерного топлива на исходе. В раскаленных объектах заканчивается гелий и водород, а горение продолжается за счет кислорода и углерода и далее вплоть до железа.

Классификация звезд сверхгигантов

По Йеркской классификации, отражающей подчинение спектра светимости, сверхгиганты относятся к I классу. Их разделили на две группы:

  • Ia – яркие сверхгиганты или гипергиганты;
  • Ib – менее яркие сверхгиганты.

По своему спектральному типу в Гарвардской классификации эти звезды занимают промежуток от O до M. Голубые сверхгиганты представлены классам O, B, A, красные – K, M, промежуточные и плохо изученные желтые – F, G.

Красные сверхгиганты

Крупные звезды покидают главную последовательность, когда в их ядре начинается горение углерода и кислорода, – они становятся красными сверхгигантами. Их газовая оболочка вырастает до огромных размеров, распространяясь на миллионы километров. Химические процессы, проходящие с проникновением конвекции из оболочки в ядро, приводят к синтезу тяжелых элементов железного пика, которые после взрыва разлетаются в космосе. Именно красные сверхгиганты обычно заканчивают жизненный путь светила и взрываются сверхновой. Газовая оболочка звезды дает начало новой туманности, а вырожденное ядро превращается в белого карлика. и – крупнейшие объекты из числа умирающих красных светил.

Голубые сверхгиганты

В отличие от красных, доживающих долгую жизнь гигантов, – это молодые и раскаленные звезды, превосходящие своей массой солнечную в 10-50 раз, а радиусом – в 20-25 раз. Их температура впечатляет – она составляет 20-50 тыс. градусов. Поверхность голубых сверхгигантов стремительно уменьшается из-за сжатия, при этом излучение внутренней энергии непрерывно растет и повышает температуру светила. Результатом такого процесса становится превращение красных сверхгигантов в голубые. Астрономы заметили, что звезды в своем развитии проходят различные стадии, на промежуточных этапах они становятся желтыми или белыми. Ярчайшая звезда Ориона – – отличный пример голубого сверхгиганта. Ее внушительная масса в 20 раз превышает Солнце, светимость выше в 130 тыс. раз.

Результаты определения звёздных поперечников оказались поистине поразительными. не подозревали раньше, что во могут быть такие звезды-гиганты . Первой звездой, истинные размеры которой удалось определить (в 1920 г.), была яркая звезда созвездия Ориона, носящая арабское название Бетельгейзе. Её поперечник оказался превышающим диаметр орбиты Марса! Другой звездой-гигантом является Антарес, самая яркая звезда в созвездии Скорпиона: её поперечник примерно в полтора раза больше диаметра земной орбиты. В ряду открытых пока звёздных гигантов надо поставить и так называемую Дивную "Мира", звезду в созвездии Кита, диаметр которой в 330 раз больше диаметра нашего Солнца. Обычно звёзды-гиганты имеют радиусы от 10 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Звёзды со светимостью большей, чем у гигантов, называются сверхгиганты и гипергиганты.

Звезды-гиганты обладают интересным физическим строением. Расчёт показывает, что подобные звёзды, несмотря на чудовищные размеры, содержат несоразмерно мало вещества. Они тяжелее нашего Солнца всего в несколько раз; а так как по объёму Бетельгейзе, например, больше Солнца в 40000000 раз, то плотность этой звезды должна быть ничтожна. И если вещество Солнца в среднем по плотности приближается к , то вещество звёзд-гигантов в этом отношении походит на разреженный воздух. Звезды-гиганты, по выражению одного астронома, "напоминают громадный аэростат малой плотности, значительно меньшей, нежели плотность воздуха".

Звезда становится гигантом после того, как весь водород, доступный для реакции в ядре звезды, был использован. Звезда, начальная масса которой не превышает примерно 0,4 солнечных масс, не станет звездой-гигантом. Это происходит потому, что вещество внутри таких звёзд сильно смешано путём конвекции, и поэтому водород продолжает участвовать в реакции до тех пор, пока не израсходует всю массу звезды, в этой точке она становится белым карликом, состоящим преимущественно из гелия. Если звезда является более массивной, чем этот нижний предел, то когда она потребит весь водород, доступный в ядре для реакции, ядро начнёт сжиматься. Теперь водород реагирует с гелием в оболочке вокруг богатого гелием ядра и часть звезды за пределами оболочки расширяется и охлаждается. В этом месте своей эволюции светимость звезды остаётся примерно постоянной и температура её поверхности понижается. Звезда начинает становиться красным гигантом. В этой точке , уже, как правило, красного гиганта, будет оставаться примерно постоянной, тогда как её светимость и радиус существенно увеличатся, а ядро продолжит сжиматься, повышая свою температуру.

Если масса звезды была ниже примерно 0,5 солнечных масс, считается, что она никогда не достигнет центральных температур, необходимых для синтеза гелия. Поэтому она будет оставаться красной звездой-гигантом с синтезом водорода, пока не начнёт превращаться в гелиевый белый карлик.

Красный гигант, а также сверхгигант - это название космических объектов с протяженными оболочками и высокой светимостью. Они относятся к поздним спектральным классам К и М. Их радиусы превосходят солнечный в сотни раз. Максимальное излучение этих звезд приходится на инфракрасную и красную области спектра. На диаграмме Герцшпрунга — Ресселла красные гиганты располагаются над линией главной последовательности, их абсолютная колеблется в пределах чуть выше нуля или имеет отрицательное значение.

Площадь такой звезды превосходит площадь Солнца минимум в 1500 раз, а при этом ее диаметр приблизительно в 40 раз больше. Так как разница в абсолютной величине с нашим светилом составляет около пяти, выходит, что красный гигант излучает в сто раз больше света. Но при этом он значительно холоднее. Солнечная температура вдвое превосходит показатели красного гиганта, и поэтому на единицу площади поверхности светило нашей системы излучает света в шестнадцать раз больше.

Видимый цвет звезды напрямую зависит от температуры поверхности. Наше Солнце раскаляется добела и имеет сравнительно небольшие размеры, поэтому его называют желтым карликом. Более холодные звезды имеют оранжевый и красный свет. Каждая звезда в процессе своей эволюции может достигнуть последних спектральных классов и стать красным гигантом на двух этапах развития. Это происходит в процессе зарождения на стадии звездообразования или же на завершающей ступени эволюции. В это время красный гигант начинает излучать энергию за счет собственной гравитационной энергии, которая выделяется при его сжатии.

По мере того как сжимается звезда, температура ее возрастает. При этом, вследствие сокращения размеров поверхности, в разы падает Она затухает. Если это «молодой» красный гигант, то в конечном итоге в его недрах запустится синтеза из водорода гелия. После чего молодая звезда выйдет на главную последовательность. У старых звезд иная судьба. На поздних этапах эволюции водород в недрах светила выгорает полностью. После чего звезда сходит с главной последовательности. По диаграмме Герцшпрунга — Рассела она передвигается в область сверхгигантов и красных гигантов. Но перед тем как перейти на эту стадию, она проходит промежуточный этап - субгиганта.

Субгигантами называют звезды, в ядре которых уже прекратились водородные термоядерные реакции, но при этом горение гелия еще не началось. Это происходит, потому что ядро недостаточно разогрелось. Примером такого субгиганта может быть Артур, расположенный в Он является оранжевой з

вездой с видимой величиной -0,1. Он находится на расстоянии от Солнца примерно в 36 - 38 Наблюдать его можно в Северном полушарии в мае, если глядеть прямо на юг. Диаметр Артура в 40 раз больше солнечного.

Желтый карлик Солнце является сравнительно молодой звездой. Ее возраст оценивается в 4,57 миллиарда лет. На главной последовательности оно будет оставаться еще приблизительно 5 миллиардов лет. Но ученым удалось смоделировать мир, в котором Солнце - красный гигант. Размеры его вырастут в 200 раз и достигнут испепелив Меркурий и Венеру. Конечно, жизнь к этому времени будет уже невозможной. На этой стадии Солнце просуществует приблизительно еще 100 миллионов лет, после чего оно превратится в и станет белым карликом.